• ログイン今すぐ開始

本書は、お客様のご参考のために原文の英語版を機械翻訳したものです。

英語版と齟齬がある場合、英語版の定めが優先するものとします。より詳しい情報については、本リンクをご参照ください。

問題を作成する

クラウドの採用:アーキテクチャを最適化し、最新のクラウド環境を継続的に改善するために支出します

クラウドでは、自社のアプリケーションやサービスがどのように構築され、利用されているかを定期的かつ詳細に確認することが重要です。これは、インスタンスのサイズを適正化したり、データベースを微調整したり、ストレージ使用量を変更したり、ロードバランサーをより適切に設定したり、さらにはアプリケーションを再構築したりするための機会を特定するための最良の方法です。

例えば、20台のインスタンスがすべて10%のCPU使用率で稼働している場合、より小さなインスタンスを使用したり、より多くの作業をインスタンスに集約したりすることを検討します。このように、クラウドの利用と支出について考えることで、環境を最適化し、迅速にコストを削減することができます。

クラウドアーキテクチャの最適化には、3つの主な目的があります。

  1. クラウドサービスをより有効に活用することで、パフォーマンス、可用性、エンドユーザー・エクスペリエンスを向上させる。
  2. コストとパフォーマンスの微妙なバランスを取りながら、クラウド利用を最適化する
  3. 現在のクラウド支出を正当化するためのビジネス上および技術上の指標を把握し、成長に応じてより大きなクラウド予算を確保するための根拠とすることができます。

このチュートリアルでは、 New Relic platform を使用して、クラウドのアーキテクチャと支出を最適化するために活用すべきすべてのデータを取得する方法を紹介します。

1.アプリケーションとクラウド環境の計測

以下の製品やインテグレーションがインストルメント化されていることを確認してください。

楽器

詳細

インフラの導入

楽器のインフラストラクチャ。まだ行っていない場合は、 インフラストラクチャエージェントの要件を確認してください 。インフラストラクチャーには、 Amazon Web Services (AWS)Microsoft Azureオンホストの統合 など、いくつかのタイプの統合が用意されています。インフラストラクチャー・エージェントをホストにインストールすると、すぐにエージェントが収集する幅広いメトリクスにアクセスできるようになります。

APMエージェントのインストール

APM でアプリケーションをインストゥルメントします。そうすることで、基盤となるクラウドサービスを最適化しながら、アプリケーションのパフォーマンスを監視することができます。これにより、インフラへの変更が実際にアプリケーションのパフォーマンスを向上させているかどうかを確認することができます。

AWSインテグレーションの設定

InfrastructureのAmazonとの統合により、インフラ、ダッシュボード、アラートなど、プラットフォームのあらゆる場所でAWSのデータを監視することができます。

Connect AWS Billing

AWS環境でホストされている場合、New Relicは、 AWS Billing の統合により、クラウドの支出を監視することができます。New Relic の AWS Billing 統合を活用するには、 Connect AWS Billing documentation の手順に従ってください。

2. ダッシュボードを作成して、異常なインフラストラクチャ メトリックを表示します。可能な場合は AWS の予算を含める

Dashboards では、データに関する強力なカスタムクエリを作成し、その結果を共通のダッシュボードに表示されるウィジェットで視覚化することができます。また、クエリの結果を アラート に直接フィードすることができ、そこで確認された逸脱に関する通知を即座に受け取ることができます。

このステップでは、パフォーマンスと使用状況 (CPU、メモリ、ディスク、データベースなど) に関連する異常なインフラストラクチャ メトリックを表示する必要があります。利用可能な場合は、AWS 予算を含めます。

アプリケーションごとに個別のダッシュボードを作成し、それらのダッシュボードを1つの データアプリ に集めます(下図参照)。このAWS Production Overviewデータアプリは、AWSのプロダクションバジェットに関連するウィジェットのセットを表示します。データアプリは、一連のトピックを段階的に説明したり、環境やサービス全体の概要を明確に示したりするプレゼンテーションに最適です。

3.最適化のためのリソースの特定

このステップでは、New Relicが取得したメトリクスを使って、どのリソースを最適化すべきかを判断する方法を紹介します。

上のダッシュボードのサンプルでは、左側のCPU使用率のウィジェットから、このアプリケーションが多くのサイズのインスタンスを使用していることがわかります。c4.xlarge」インスタンス(珊瑚色)は、常に約20%のCPU容量しか消費していないことに注目してください。しかし、中央のウィジェット(ライトグリーン)で「c4.xlarge」のメモリ使用量を分析すると、このインスタンスのメモリ使用量は20%から80%の範囲であることがわかります。これは、このアプリケーションがCPUよりもメモリに集中していることを示唆しています。この場合、インスタンスタイプを計算最適化インスタンスからメモリ最適化インスタンスに変更する必要があります。なお、これらの最適化を行った際のアプリケーションの平均応答時間は、ダッシュボードの右側のチャートで確認することができます。

これは、最適化の候補となりうるクラウドベースのリソースを特定する方法の一例です。

最適化のためのアーキテクチャを特定したので、次に進みます。インスタンスのサイズを適切に調整する、データベースを微調整する、ストレージの使用方法を変更する、ロード バランサーをより適切に構成する、またはアプリケーションを再構築するなど、最終的な目標は、新しく最適化されたアーキテクチャを他のアーキテクチャと比較できるようにすることです。ステップ 2 でキャプチャした異常。異常の詳細については、目標と異常の確立のチュートリアルを参照してください。

4.オプションアラートの設定

NRQL クエリのアラート条件を作成することができます。必要に応じて、必ず 完全なドキュメント を参照してください。

このクエリを使用して、アラートを設定します。

SELECT latest(`provider.actualAmount`) as '$ Actual', 
latest(`provider.forecastedAmount`) as '$ Forecast', 
max(`provider.limitAmount`) as '$ Limit' 
FROM FinanceSample WHERE provider = 'BillingBudget' 
AND `provider.budgetName` = '[Your Cloud Budget]'

データにクエリを書いてダッシュボードに表示することができれば、それを使って 警告条件 を簡単に生成することができます。

異常クエリ

New Relic では、データに対して「異常クエリ」を作成することもできます。これらは、結果にハード リミットを設定せずに作成するクエリです。むしろ、応用インテリジェンスにパフォーマンス データを機械学習させ、データが異常値から大きく外れると警告します。

異常クエリを作成するには、 アラート コンソールに移動し、アラート ポリシーに移動して、新しいアラート ポリシーを追加します。次に、次の手順に従います。

  1. 警告ポリシーを作成します。ポリシーに簡潔で分かりやすい名前を付け、「インシデントの優先度」を選択します。次に、「警告ポリシーの作成」を選択します。

  2. 条件を作成する選択 NRQL

  3. クエリを定義し、最近のパフォーマンスに基づいて、単純なスライダーと視覚化を使用して、制限付きで適用されるインテリジェンスがデータを分析する方法を決定します。

    グラフの下部にあるスライダーは、予算のしきい値(青い線)の周りのグレーの帯を増減させます。ここに表示されている設定では、最近のデータに基づいて違反がゼロになっています。ただし、青い線が灰色の帯から急に上がったり下がったりした場合は、すぐに通知されます。

アプライドインテリジェンスは、クラウドの支出やパフォーマンスデータについて積極的に学ぶのに役立つ優れた方法です。

もっと詳しく知る

Copyright © 2022 New Relic Inc.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.