• /
  • EnglishEspañolFrançais日本語한국어Português
  • ログイン今すぐ開始

Monitor Kafka on Kubernetes (Strimzi) with OpenTelemetry

Monitor your Kafka cluster running on Kubernetes with Strimzi operator by deploying the OpenTelemetry Collector. The collector automatically discovers Kafka broker pods and collects comprehensive metrics.

Before you begin

Ensure you have:

Enable JMX in Strimzi Kafka

Ensure your Kafka cluster has JMX enabled in the Strimzi Kafka resource:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
namespace: kafka
spec:
kafka:
jmxOptions: {} # Enables JMX with default settings
# ...other broker configuration

Step 1: Create namespace

Create a dedicated namespace for the OpenTelemetry Collector (or use your existing Kafka namespace):

bash
$
kubectl create namespace kafka

Step 2: Create secret with license key

Store your New Relic license key as a Kubernetes secret:

bash
$
kubectl create secret generic nr-license-key \
>
--from-literal=NEW_RELIC_LICENSE_KEY=YOUR_LICENSE_KEY \
>
-n kafka

Replace YOUR_LICENSE_KEY with your actual New Relic license key.

Step 3: Deploy OpenTelemetry Collector

3.1 Build custom collector image

Create a custom OpenTelemetry Collector image with Java runtime and JMX scraper.

重要

Version Compatibility: This guide uses JMX Scraper 1.52.0 and OpenTelemetry Collector 0.143.1. Older collector versions may not include this scraper's hash in their compatibility list. For best results, use the latest versions as shown in this guide.

Target Architecture: Refer to the OpenTelemetry Collector releases page to find the correct binary for your system architecture (e.g., linux_amd64, linux_arm64, darwin_amd64). Update the TARGETARCH variable in the Dockerfile accordingly.

Save as Dockerfile:

# Multi-stage build for OpenTelemetry Collector with Java support for JMX receiver
# This image bundles the OTEL Collector with Java 17 runtime and JMX scraper JAR
FROM alpine:latest as prep
# OpenTelemetry Collector Binary
ARG OTEL_VERSION=0.143.1
ARG TARGETARCH=linux_amd64
ADD "https://github.com/open-telemetry/opentelemetry-collector-releases/releases/download/v${OTEL_VERSION}/otelcol-contrib_${OTEL_VERSION}_${TARGETARCH}.tar.gz" /otelcontribcol
RUN tar -zxvf /otelcontribcol
# JMX Scraper JAR (for JMX receiver with YAML-based configuration)
ARG JMX_SCRAPER_JAR_VERSION=1.52.0
ADD https://github.com/open-telemetry/opentelemetry-java-contrib/releases/download/v${JMX_SCRAPER_JAR_VERSION}/opentelemetry-jmx-scraper.jar /opt/opentelemetry-jmx-scraper.jar
# Set permissions for nonroot user (uid 65532)
ARG USER_UID=65532
RUN chown ${USER_UID} /opt/opentelemetry-jmx-scraper.jar
# Final minimal image with Java runtime
FROM openjdk:17-jre-slim
COPY --from=prep /opt/opentelemetry-jmx-scraper.jar /opt/opentelemetry-jmx-scraper.jar
COPY --from=prep /otelcol-contrib /otelcol-contrib
EXPOSE 4317 4318 8888
ENTRYPOINT ["/otelcol-contrib"]
CMD ["--config", "/conf/otel-agent-config.yaml"]

Build and push the image:

bash
$
docker build -t your-registry/otel-collector-kafka:latest .
$
docker push your-registry/otel-collector-kafka:latest

3.2 Create JMX custom metrics ConfigMap

First, create a ConfigMap with custom JMX metrics configuration. Save as jmx-kafka-config.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
name: jmx-kafka-config
namespace: kafka
data:
jmx-kafka-config.yaml: |
---
rules:
# Per-topic custom metrics using custom MBean commands
- bean: kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,topic=*
metricAttribute:
topic: param(topic)
mapping:
Count:
metric: kafka.prod.msg.count
type: counter
desc: The number of messages in per topic
unit: "{message}"
- bean: kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,topic=*
metricAttribute:
topic: param(topic)
direction: const(in)
mapping:
Count:
metric: kafka.topic.io
type: counter
desc: The bytes received or sent per topic
unit: By
- bean: kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec,topic=*
metricAttribute:
topic: param(topic)
direction: const(out)
mapping:
Count:
metric: kafka.topic.io
type: counter
desc: The bytes received or sent per topic
unit: By
# Cluster-level metrics using controller-based MBeans
- bean: kafka.controller:type=KafkaController,name=GlobalTopicCount
mapping:
Value:
metric: kafka.cluster.topic.count
type: gauge
desc: The total number of global topics in the cluster
unit: "{topic}"
- bean: kafka.controller:type=KafkaController,name=GlobalPartitionCount
mapping:
Value:
metric: kafka.cluster.partition.count
type: gauge
desc: The total number of global partitions in the cluster
unit: "{partition}"
- bean: kafka.controller:type=KafkaController,name=FencedBrokerCount
mapping:
Value:
metric: kafka.broker.fenced.count
type: gauge
desc: The number of fenced brokers in the cluster
unit: "{broker}"
- bean: kafka.controller:type=KafkaController,name=PreferredReplicaImbalanceCount
mapping:
Value:
metric: kafka.partition.non_preferred_leader
type: gauge
desc: The count of topic partitions for which the leader is not the preferred leader
unit: "{partition}"
# Broker-level metrics using ReplicaManager MBeans
- bean: kafka.server:type=ReplicaManager,name=UnderMinIsrPartitionCount
mapping:
Value:
metric: kafka.partition.under_min_isr
type: gauge
desc: The number of partitions where the number of in-sync replicas is less than the minimum
unit: "{partition}"
# Broker uptime metric using JVM Runtime
- bean: java.lang:type=Runtime
mapping:
Uptime:
metric: kafka.broker.uptime
type: gauge
desc: Broker uptime in milliseconds
unit: ms
# Leader count per broker
- bean: kafka.server:type=ReplicaManager,name=LeaderCount
mapping:
Value:
metric: kafka.broker.leader.count
type: gauge
desc: Number of partitions for which this broker is the leader
unit: "{partition}"
# JVM metrics
- bean: java.lang:type=GarbageCollector,name=*
mapping:
CollectionCount:
metric: jvm.gc.collections.count
type: counter
unit: "{collection}"
desc: total number of collections that have occurred
metricAttribute:
name: param(name)
CollectionTime:
metric: jvm.gc.collections.elapsed
type: counter
unit: ms
desc: the approximate accumulated collection elapsed time in milliseconds
metricAttribute:
name: param(name)
- bean: java.lang:type=Memory
unit: By
prefix: jvm.memory.
dropNegativeValues: true
mapping:
HeapMemoryUsage.committed:
metric: heap.committed
desc: current heap usage
type: gauge
HeapMemoryUsage.max:
metric: heap.max
desc: current heap usage
type: gauge
HeapMemoryUsage.used:
metric: heap.used
desc: current heap usage
type: gauge
- bean: java.lang:type=Threading
mapping:
ThreadCount:
metric: jvm.thread.count
type: gauge
unit: "{thread}"
desc: Total thread count (Kafka typical range 100-300 threads)
- bean: java.lang:type=OperatingSystem
prefix: jvm.
dropNegativeValues: true
mapping:
SystemLoadAverage:
metric: system.cpu.load_1m
type: gauge
unit: "{run_queue_item}"
desc: System load average (1 minute) - alert if > CPU count
AvailableProcessors:
metric: cpu.count
type: gauge
unit: "{cpu}"
desc: Number of processors available
ProcessCpuLoad:
metric: cpu.recent_utilization
type: gauge
unit: '1'
desc: Recent CPU utilization for JVM process (0.0 to 1.0)
SystemCpuLoad:
metric: system.cpu.utilization
type: gauge
unit: '1'
desc: Recent CPU utilization for whole system (0.0 to 1.0)
OpenFileDescriptorCount:
metric: file_descriptor.count
type: gauge
unit: "{file_descriptor}"
desc: Number of open file descriptors - alert if > 80% of ulimit
- bean: java.lang:type=ClassLoading
mapping:
LoadedClassCount:
metric: jvm.class.count
type: gauge
unit: "{class}"
desc: Currently loaded class count
- bean: java.lang:type=MemoryPool,name=*
type: gauge
unit: By
metricAttribute:
name: param(name)
mapping:
Usage.used:
metric: jvm.memory.pool.used
desc: Memory pool usage by generation (G1 Old Gen, Eden, Survivor)
Usage.max:
metric: jvm.memory.pool.max
desc: Maximum memory pool size
CollectionUsage.used:
metric: jvm.memory.pool.used_after_last_gc
desc: Memory used after last GC (shows retained memory baseline)

ヒント

Customize metrics collection: You can scrape additional Kafka metrics by adding custom MBean rules to the kafka-jmx-config.yaml file:

Apply the JMX ConfigMap:

bash
$
kubectl apply -f jmx-kafka-config.yaml

3.3 Create collector ConfigMap

Create a ConfigMap with the OpenTelemetry Collector configuration. Save as otel-kafka-config.yaml:

---
apiVersion: v1
kind: ConfigMap
metadata:
name: otel-collector-config
namespace: kafka
labels:
app: otel-collector
data:
otel-collector-config.yaml: |
receivers:
# Kafka cluster-level metrics (runs once per OTEL collector)
kafkametrics/cluster:
brokers:
- "my-cluster-kafka-bootstrap.kafka.svc.cluster.local:9092"
protocol_version: 2.8.0
scrapers:
- brokers
- topics
- consumers
collection_interval: 30s
metrics:
kafka.topic.min_insync_replicas:
enabled: true
kafka.topic.replication_factor:
enabled: true
kafka.partition.replicas:
enabled: false
kafka.partition.oldest_offset:
enabled: false
kafka.partition.current_offset:
enabled: false
# Receiver creator for dynamic per-broker JMX receivers
receiver_creator:
watch_observers: [k8s_observer]
receivers:
# JMX receiver template (created per discovered broker pod)
jmx:
rule: type == "pod" && labels["strimzi.io/kind"] == "Kafka" && labels["strimzi.io/cluster"] == "my-cluster" && labels["strimzi.io/name"] == "my-cluster-kafka"
config:
endpoint: 'service:jmx:rmi:///jndi/rmi://`endpoint`:9999/jmxrmi'
jar_path: /opt/opentelemetry-jmx-scraper.jar
target_system: kafka
jmx_configs: /conf-jmx/jmx-kafka-config.yaml
collection_interval: 30s
# Set dynamic resource attributes from discovered pod
resource_attributes:
broker.endpoint: '`endpoint`'
exporters:
otlp:
endpoint: https://otlp.nr-data.net:4317
tls:
insecure: false
sending_queue:
num_consumers: 12
queue_size: 5000
retry_on_failure:
enabled: true
headers:
api-key: ${NEW_RELIC_LICENSE_KEY}
processors:
# Batch processor for efficiency
batch/aggregation:
send_batch_size: 1024
timeout: 30s
# Memory limiter to prevent OOM
memory_limiter:
limit_percentage: 80
spike_limit_percentage: 30
check_interval: 1s
# Detect system resources
resourcedetection:
detectors: [env, docker, system]
timeout: 5s
override: false
# Add Kafka cluster metadata
resource/kafka_metadata:
attributes:
- key: kafka.cluster.name
value: my-cluster
action: upsert
# Extract Kubernetes attributes
k8sattributes:
auth_type: serviceAccount
passthrough: false
extract:
metadata:
- k8s.pod.name
- k8s.pod.uid
- k8s.namespace.name
- k8s.node.name
labels:
- tag_name: strimzi.cluster
key: strimzi.io/cluster
from: pod
- tag_name: strimzi.kind
key: strimzi.io/kind
from: pod
# Transform metrics for New Relic UI
transform:
metric_statements:
- context: metric
statements:
# Clean up descriptions and units
- set(description, "") where description != ""
- set(unit, "") where unit != ""
- context: resource
statements:
# Extract broker.id from k8s.pod.name: my-cluster-kafka-0 -> 0 (supports multi-digit)
- set(attributes["broker.id"], ExtractPatterns(attributes["k8s.pod.name"], ".*-(?P<broker_id>\\d+)$")["broker_id"]) where attributes["k8s.pod.name"] != nil
# Remove broker.id for cluster-level metrics
transform/remove_broker_id:
metric_statements:
- context: resource
statements:
- delete_key(attributes, "broker.id")
- delete_key(attributes, "broker.endpoint")
- delete_key(attributes, "k8s.pod.name")
# Topic sum aggregation for replicas_in_sync
metricstransform/kafka_topic_sum_aggregation:
transforms:
- include: kafka.partition.replicas_in_sync
action: insert
new_name: kafka.partition.replicas_in_sync.total
operations:
- action: aggregate_labels
label_set: [ topic ]
aggregation_type: sum
# Filter to include only cluster-level metrics
filter/include_cluster_metrics:
metrics:
include:
match_type: regexp
metric_names:
- "kafka\\.partition\\.offline"
- "kafka\\.(leader|unclean)\\.election\\.rate"
- "kafka\\.partition\\.non_preferred_leader"
- "kafka\\.broker\\.fenced\\.count"
- "kafka\\.cluster\\.partition\\.count"
- "kafka\\.cluster\\.topic\\.count"
# Filter to exclude cluster-level metrics from broker pipeline
filter/exclude_cluster_metrics:
metrics:
exclude:
match_type: regexp
metric_names:
- "kafka\\.partition\\.offline"
- "kafka\\.(leader|unclean)\\.election\\.rate"
- "kafka\\.partition\\.non_preferred_leader"
- "kafka\\.broker\\.fenced\\.count"
- "kafka\\.cluster\\.partition\\.count"
- "kafka\\.cluster\\.topic\\.count"
# Convert cumulative metrics to delta for New Relic
cumulativetodelta:
extensions:
# K8s observer extension
k8s_observer:
auth_type: serviceAccount
observe_pods: true
observe_nodes: false
service:
extensions: [k8s_observer]
pipelines:
# Per-broker metrics pipeline (with broker.id)
metrics/broker:
receivers:
- receiver_creator
- kafkametrics/cluster
processors:
- memory_limiter
- resourcedetection
- resource/kafka_metadata
- k8sattributes
- filter/exclude_cluster_metrics
- transform
- metricstransform/kafka_topic_sum_aggregation
- cumulativetodelta
- batch/aggregation
exporters: [otlp]
# Cluster-level metrics pipeline (without broker.id, aggregated)
metrics/cluster:
receivers:
- receiver_creator
processors:
- memory_limiter
- resourcedetection
- resource/kafka_metadata
- k8sattributes
- filter/include_cluster_metrics
- transform/remove_broker_id
- metricstransform/kafka_topic_sum_aggregation
- cumulativetodelta
- batch/aggregation
exporters: [otlp]

Configuration notes:

  • Replace my-cluster-kafka-bootstrap with your Strimzi Kafka service name
  • Replace my-cluster in the rule and kafka.cluster.name with your cluster name
  • Update the namespace if different from kafka
  • OTLP endpoint: Uses https://otlp.nr-data.net:4317 (US region) or https://otlp.eu01.nr-data.net:4317 (EU region). See Configure your OTLP endpoint for other regions
  • The receiver_creator automatically discovers Kafka broker pods using Strimzi labels

Apply the ConfigMap:

bash
$
kubectl apply -f otel-kafka-config.yaml

3.4 Deploy the collector

Create the deployment. Save as otel-collector-deployment.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
name: otel-collector
namespace: kafka
spec:
replicas: 1
selector:
matchLabels:
app: otel-collector
template:
metadata:
labels:
app: otel-collector
spec:
serviceAccountName: otel-collector
containers:
- name: otel-collector
image: your-registry/otel-collector-kafka:latest
env:
- name: NEW_RELIC_LICENSE_KEY
valueFrom:
secretKeyRef:
name: nr-license-key
key: NEW_RELIC_LICENSE_KEY
resources:
limits:
cpu: "1"
memory: "2Gi"
requests:
cpu: "500m"
memory: "1Gi"
volumeMounts:
- name: vol-kafka-test-cluster
mountPath: /conf
- name: jmx-config
mountPath: /conf-jmx
ports:
- containerPort: 4317 # OTLP gRPC
- containerPort: 4318 # OTLP HTTP
- containerPort: 8888 # Metrics
volumes:
- name: vol-kafka-test-cluster
configMap:
name: otel-collector-config
items:
- key: otel-collector-config.yaml
path: otel-agent-config.yaml
- name: jmx-config
configMap:
name: jmx-kafka-config
items:
- key: jmx-kafka-config.yaml
path: jmx-kafka-config.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: otel-collector
namespace: kafka
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: otel-collector
rules:
- apiGroups: [""]
resources: ["pods", "nodes"]
verbs: ["get", "list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: otel-collector
subjects:
- kind: ServiceAccount
name: otel-collector
namespace: kafka
roleRef:
kind: ClusterRole
name: otel-collector
apiGroup: rbac.authorization.k8s.io

Resource configuration:

  • The resource limits above are suitable for medium-sized Kafka clusters (5-10 brokers, 20-100 topics)

Apply the deployment:

bash
$
kubectl apply -f otel-collector-deployment.yaml

Verify the collector is running:

bash
$
kubectl get pods -n kafka -l app=otel-collector
$
kubectl logs -n kafka -l app=otel-collector -f

Step 4: (Optional) Instrument producer or consumer applications

To collect application-level telemetry from Kafka producer and consumer applications running in Kubernetes, instrument them with the OpenTelemetry Java Agent.

Instrument your Kafka application

To instrument your Kafka producer or consumer applications, add the OpenTelemetry Java Agent to your existing deployment:

  1. Download the Java agent: Add an init container to download the agent JAR:

    initContainers:
    - name: download-otel-agent
    image: busybox:latest
    command:
    - sh
    - -c
    - |
    wget -O /otel/opentelemetry-javaagent.jar \
    https://github.com/open-telemetry/opentelemetry-java-instrumentation/releases/latest/download/opentelemetry-javaagent.jar
    volumeMounts:
    - name: otel-agent
    mountPath: /otel
  2. Configure the Java agent: Add environment variables to your application container:

    env:
    - name: JAVA_TOOL_OPTIONS
    value: >-
    -javaagent:/otel/opentelemetry-javaagent.jar
    -Dotel.service.name="kafka-producer"
    -Dotel.resource.attributes="kafka.cluster.name=my-cluster"
    -Dotel.exporter.otlp.endpoint="http://localhost:4317"
    -Dotel.exporter.otlp.protocol="grpc"
    -Dotel.metrics.exporter="otlp"
    -Dotel.traces.exporter="otlp"
    -Dotel.logs.exporter="otlp"
    -Dotel.instrumentation.kafka.experimental-span-attributes="true"
    -Dotel.instrumentation.messaging.experimental.receive-telemetry.enabled="true"
    -Dotel.instrumentation.kafka.producer-propagation.enabled="true"
    -Dotel.instrumentation.kafka.enabled="true"
    volumeMounts:
    - name: otel-agent
    mountPath: /otel
  3. Add the volume: Include the volume definition:

    volumes:
    - name: otel-agent
    emptyDir: {}

Replace:

  • kafka-producer with a unique name for your application
  • my-cluster with your Kafka cluster name

ヒント

The configuration above sends telemetry to an OpenTelemetry Collector running on localhost:4317. Deploy your own collector with this configuration:

receivers:
otlp:
protocols:
grpc:
endpoint: "0.0.0.0:4317"
exporters:
otlp/newrelic:
endpoint: https://otlp.nr-data.net:4317
headers:
api-key: "${NEW_RELIC_LICENSE_KEY}"
compression: gzip
timeout: 30s
service:
pipelines:
traces:
receivers: [otlp]
exporters: [otlp/newrelic]
metrics:
receivers: [otlp]
exporters: [otlp/newrelic]
logs:
receivers: [otlp]
exporters: [otlp/newrelic]

This allows you to customize processing, add filters, or route to multiple backends. For other endpoint configurations, see Configure your OTLP endpoint.

The Java Agent provides out-of-the-box Kafka instrumentation with zero code changes, capturing:

  • Request latencies
  • Throughput metrics
  • Error rates
  • Distributed traces

For advanced configuration, see the Kafka instrumentation documentation.

Step 5: (Optional) Forward Kafka broker logs

To collect Kafka broker logs from your Kubernetes pods and send them to New Relic, configure the file log receiver in your OpenTelemetry Collector.

Find your data

After a few minutes, your Kafka metrics should appear in New Relic. See Find your data for detailed instructions on exploring your Kafka metrics across different views in the New Relic UI.

You can also query your data with NRQL:

FROM Metric SELECT * WHERE kafka.cluster.name = 'my-kafka-cluster'

Troubleshooting

Next steps

Copyright © 2026 New Relic株式会社。

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.