ヒント
この手順は、クイックスタートを構築する方法を教えるコースの一部です。 まだご覧になっていない方は、コース紹介をご覧ください。
このコースの各手順は、前の手順に基づいて構築されるため、この手順に進む前に、必ず前の手順を完了し、製品からメトリクスを送信してください。
イベントは、製品内で発生する事象をキャプチャします。 たとえば、プラットフォームがアプリケーションのデプロイメントを自動化している場合は、ジョブが実行されるたびにイベントを生成する可能性があります。 アプリケーションがセキュリティの脆弱性をスキャンする場合、脆弱性が検出されるたびにイベントを生成する可能性があります。
New Relic 、イベントをイベントAPIに送信するためのアプリケーションを設計するためのさまざまな方法を提供しています。
このレッスンでは、テレメトリー ソフトウェア開発キット (SDK) を使用して、製品からイベントを送信します。
import osimport randomimport datetimefrom sys import getsizeof
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetric
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}stats = { "read_response_times": [], "read_errors": 0, "read_count": 0, "create_response_times": [], "create_errors": 0, "create_count": 0, "update_response_times": [], "update_errors": 0, "update_count": 0, "delete_response_times": [], "delete_errors": 0, "delete_count": 0, "cache_hit": 0,}last_push = { "read": datetime.datetime.now(), "create": datetime.datetime.now(), "update": datetime.datetime.now(), "delete": datetime.datetime.now(),}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10: stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["read_errors"] += 1 stats["read_count"] += 1 try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value stats["create_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["create_errors"] += 1 stats["create_count"] += 1 try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value stats["update_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["update_errors"] += 1 stats["update_count"] += 1 try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None) stats["delete_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["delete_errors"] += 1 stats["delete_count"] += 1 try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now() interval_ms = (now - last_push[type_]).total_seconds() * 1000 if interval_ms >= 2000: send_metrics(type_, interval_ms)
def send_metrics(type_, interval_ms): print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db)) db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric( name=f"fdb_{type_}_errors", value=stats[f"{type_}_errors"], interval_ms=interval_ms )
cache_hits = CountMetric( name=f"fdb_cache_hits", value=stats["cache_hit"], interval_ms=interval_ms )
response_times = stats[f"{type_}_response_times"] response_time_summary = SummaryMetric( f"fdb_{type_}_responses", count=len(response_times), min=min(response_times), max=max(response_times), sum=sum(response_times), interval_ms=interval_ms, )
batch = [keys, db_size, errors, cache_hits, response_time_summary] response = metric_client.send_batch(batch) response.raise_for_status() print("Sent metrics successfully!") clear(type_)
def clear(type_): stats[f"{type_}_response_times"] = [] stats[f"{type_}_errors"] = 0 stats["cache_hit"] = 0 stats[f"{type_}_count"] = 0 last_push[type_] = datetime.datetime.now()
SDKを使用する
当社は、最も人気のあるプログラミング言語のいくつかでオープンソーステレメトリ SDKを提供しています。 これらは、イベントAPIを含むデータ取り込みAPIにデータを送信します。 これらの言語 SDK のうち、Python と Java の 2 つがイベントAPIで動作します。
ここでは、 Python テレメトリー SDKを使用してイベントをNew Relicに送信します。
コース リポジトリのsend-events/flashDB
ディレクトリに変更します。
$cd ../../send-events/flashDB
まだインストールしていない場合は、 newrelic-telemetry-sdk
パッケージをインストールしてください。
$pip install newrelic-telemetry-sdk
任意の IDE でdb.py
ファイルを開き、 EventClient
を構成します。
import osimport randomimport datetimefrom sys import getsizeof
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetricfrom newrelic_telemetry_sdk import EventClient
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}stats = { "read_response_times": [], "read_errors": 0, "read_count": 0, "create_response_times": [], "create_errors": 0, "create_count": 0, "update_response_times": [], "update_errors": 0, "update_count": 0, "delete_response_times": [], "delete_errors": 0, "delete_count": 0, "cache_hit": 0,}last_push = { "read": datetime.datetime.now(), "create": datetime.datetime.now(), "update": datetime.datetime.now(), "delete": datetime.datetime.now(),}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10: stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["read_errors"] += 1 stats["read_count"] += 1 try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value stats["create_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["create_errors"] += 1 stats["create_count"] += 1 try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value stats["update_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["update_errors"] += 1 stats["update_count"] += 1 try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None) stats["delete_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["delete_errors"] += 1 stats["delete_count"] += 1 try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now() interval_ms = (now - last_push[type_]).total_seconds() * 1000 if interval_ms >= 2000: send_metrics(type_, interval_ms)
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db)) db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric( name=f"fdb_{type_}_errors", value=stats[f"{type_}_errors"], interval_ms=interval_ms )
cache_hits = CountMetric( name=f"fdb_cache_hits", value=stats["cache_hit"], interval_ms=interval_ms )
response_times = stats[f"{type_}_response_times"] response_time_summary = SummaryMetric( f"fdb_{type_}_responses", count=len(response_times), min=min(response_times), max=max(response_times), sum=sum(response_times), interval_ms=interval_ms, )
batch = [keys, db_size, errors, cache_hits, response_time_summary] response = metric_client.send_batch(batch) response.raise_for_status() print("Sent metrics successfully!") clear(type_)
def clear(type_): stats[f"{type_}_response_times"] = [] stats[f"{type_}_errors"] = 0 stats["cache_hit"] = 0 stats[f"{type_}_count"] = 0 last_push[type_] = datetime.datetime.now()
重要
この例では、 $NEW_RELIC_LICENSE_KEY
という環境変数が必要です。
イベントをNew Relicに送信するようにアプリを準備します。
import osimport randomimport datetimefrom sys import getsizeof
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetricfrom newrelic_telemetry_sdk import EventClient, Event
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}stats = { "read_response_times": [], "read_errors": 0, "read_count": 0, "create_response_times": [], "create_errors": 0, "create_count": 0, "update_response_times": [], "update_errors": 0, "update_count": 0, "delete_response_times": [], "delete_errors": 0, "delete_count": 0, "cache_hit": 0,}last_push = { "read": datetime.datetime.now(), "create": datetime.datetime.now(), "update": datetime.datetime.now(), "delete": datetime.datetime.now(),}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10: stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["read_errors"] += 1 stats["read_count"] += 1 try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value stats["create_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["create_errors"] += 1 stats["create_count"] += 1 try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value stats["update_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["update_errors"] += 1 stats["update_count"] += 1 try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None) stats["delete_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["delete_errors"] += 1 stats["delete_count"] += 1 try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now() interval_ms = (now - last_push[type_]).total_seconds() * 1000 if interval_ms >= 2000: send_metrics(type_, interval_ms)
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db)) db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric( name=f"fdb_{type_}_errors", value=stats[f"{type_}_errors"], interval_ms=interval_ms )
cache_hits = CountMetric( name=f"fdb_cache_hits", value=stats["cache_hit"], interval_ms=interval_ms )
response_times = stats[f"{type_}_response_times"] response_time_summary = SummaryMetric( f"fdb_{type_}_responses", count=len(response_times), min=min(response_times), max=max(response_times), sum=sum(response_times), interval_ms=interval_ms, )
batch = [keys, db_size, errors, cache_hits, response_time_summary] response = metric_client.send_batch(batch) response.raise_for_status() print("Sent metrics successfully!") clear(type_)
def send_event(type_):
print("sending event...")
count = Event( "fdb_method", {"method": type_} )
response = event_client.send_batch(count) response.raise_for_status() print("Event sent successfully!")
def clear(type_): stats[f"{type_}_response_times"] = [] stats[f"{type_}_errors"] = 0 stats["cache_hit"] = 0 stats[f"{type_}_count"] = 0 last_push[type_] = datetime.datetime.now()
ここで、 New Relicに count
イベントを送信するようにプラットフォームを設定します。
try_send
モジュールを修正して、2 秒ごとにイベントを送信します。
import osimport randomimport datetimefrom sys import getsizeof
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetricfrom newrelic_telemetry_sdk import EventClient, Event
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}stats = { "read_response_times": [], "read_errors": 0, "read_count": 0, "create_response_times": [], "create_errors": 0, "create_count": 0, "update_response_times": [], "update_errors": 0, "update_count": 0, "delete_response_times": [], "delete_errors": 0, "delete_count": 0, "cache_hit": 0,}last_push = { "read": datetime.datetime.now(), "create": datetime.datetime.now(), "update": datetime.datetime.now(), "delete": datetime.datetime.now(),}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10: stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["read_errors"] += 1 stats["read_count"] += 1 try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value stats["create_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["create_errors"] += 1 stats["create_count"] += 1 try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value stats["update_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["update_errors"] += 1 stats["update_count"] += 1 try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None) stats["delete_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["delete_errors"] += 1 stats["delete_count"] += 1 try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now() interval_ms = (now - last_push[type_]).total_seconds() * 1000 if interval_ms >= 2000: send_metrics(type_, interval_ms) send_event(type_)
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db)) db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric( name=f"fdb_{type_}_errors", value=stats[f"{type_}_errors"], interval_ms=interval_ms )
cache_hits = CountMetric( name=f"fdb_cache_hits", value=stats["cache_hit"], interval_ms=interval_ms )
response_times = stats[f"{type_}_response_times"] response_time_summary = SummaryMetric( f"fdb_{type_}_responses", count=len(response_times), min=min(response_times), max=max(response_times), sum=sum(response_times), interval_ms=interval_ms, )
batch = [keys, db_size, errors, cache_hits, response_time_summary] response = metric_client.send_batch(batch) response.raise_for_status() print("Sent metrics successfully!") clear(type_)
def send_event(type_):
print("sending event...")
count = Event( "fdb_method", {"method": type_} )
response = event_client.send_batch(count) response.raise_for_status() print("Event sent successfully!")
def clear(type_): stats[f"{type_}_response_times"] = [] stats[f"{type_}_errors"] = 0 stats["cache_hit"] = 0 stats[f"{type_}_count"] = 0 last_push[type_] = datetime.datetime.now()
プラットフォームは、構成されたイベントを 2 秒ごとに報告するようになります。
build-a-quickstart-lab/send-events/flashDB
にあるアプリケーションのルートに移動します。
サービスを実行して、イベントが報告されていることを確認します。
$python simulator.pyWriting...try_sendWriting...try_sendReading...try_sendReading...try_sendWriting...try_sendWriting...try_sendReading...sending metrics...Sent metrics successfully!sending event...Event sent successfully!
代替オプション
言語 SDK がニーズに合わない場合は、他のオプションをお試しください。
- 手動実装: ご希望の言語の SDK がイベントをサポートしていない場合は、いつでも手動で独自のライブラリを実装し、 New RelicイベントAPIに POST リクエストを送信できます。
- Prometheus データ: Prometheusデータは、 リモート書き込みとOpenMetricsの 2 つの方法で New Relic に送信できます。 大まかに言えば、独自の Prometheus サーバーを管理する場合はリモート書き込みを使用し、管理しない場合は OpenMetrics を使用する必要があります。
- Flex エージェント: サーバーレスFlex エージェントは可能性の 1 つですが、開始するにはより複雑な統合が必要になる可能性があります。
この手順では、イベントをNew Relicに送信するようにサービスをインストゥルメントしました。 次に、ログを送信するためにそれを計画します。
ヒント
この手順は、クイックスタートを構築する方法を教えるコースの一部です。 次のレッスンに進み、製品からログを送信します。