• /
  • EnglishEspañol日本語한국어Português
  • Log inStart now

Send logs from your product

Tip

This procedure is a part of course that teaches you how to build a quickstart. If you haven't already, checkout the course introduction.

Each procedure in this course builds on top of the last one, so make sure you've completed the last procedure, send events from your product before proceeding with this one.

Logs are generated by applications. They are time-based text records that help your users see what's happening in your system.

New Relic, provides you a variety of ways to instrument your application to send logs to our Logs API.

In this lesson, you learn to send logs from your product using our telemetry software development kit (SDK).

import os
import random
import datetime
from sys import getsizeof
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetric
from newrelic_telemetry_sdk import EventClient, Event
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])
event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}
stats = {
"read_response_times": [],
"read_errors": 0,
"read_count": 0,
"create_response_times": [],
"create_errors": 0,
"create_count": 0,
"update_response_times": [],
"update_errors": 0,
"update_count": 0,
"delete_response_times": [],
"delete_errors": 0,
"delete_count": 0,
"cache_hit": 0,
}
last_push = {
"read": datetime.datetime.now(),
"create": datetime.datetime.now(),
"update": datetime.datetime.now(),
"delete": datetime.datetime.now(),
}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10:
stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["read_errors"] += 1
stats["read_count"] += 1
try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value
stats["create_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["create_errors"] += 1
stats["create_count"] += 1
try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value
stats["update_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["update_errors"] += 1
stats["update_count"] += 1
try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None)
stats["delete_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["delete_errors"] += 1
stats["delete_count"] += 1
try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now()
interval_ms = (now - last_push[type_]).total_seconds() * 1000
if interval_ms >= 2000:
send_metrics(type_, interval_ms)
send_event(type_)
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db))
db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric(
name=f"fdb_{type_}_errors",
value=stats[f"{type_}_errors"],
interval_ms=interval_ms
)
cache_hits = CountMetric(
name=f"fdb_cache_hits",
value=stats["cache_hit"],
interval_ms=interval_ms
)
response_times = stats[f"{type_}_response_times"]
response_time_summary = SummaryMetric(
f"fdb_{type_}_responses",
count=len(response_times),
min=min(response_times),
max=max(response_times),
sum=sum(response_times),
interval_ms=interval_ms,
)
batch = [keys, db_size, errors, cache_hits, response_time_summary]
response = metric_client.send_batch(batch)
response.raise_for_status()
print("Sent metrics successfully!")
clear(type_)
def send_event(type_):
print("sending event...")
count = Event(
"fdb_method", {"method": type_}
)
response = event_client.send_batch(count)
response.raise_for_status()
print("Event sent successfully!")
def clear(type_):
stats[f"{type_}_response_times"] = []
stats[f"{type_}_errors"] = 0
stats["cache_hit"] = 0
stats[f"{type_}_count"] = 0
last_push[type_] = datetime.datetime.now()
db.py

Use our SDK

We offer an open source telemetry SDK in several of the most popular programming languages. These send data to our data ingest APIs, including our Log API. Of these language SDKs, Python and Java work with the Log API.

In this lesson, you learn how to install and use the Python telemetry SDK to send logs to New Relic.

Change to the send-logs/flashDB direcrory of the course repository.

bash
$
cd ../../send-events/flashDB

If you haven't already, install the newrelic-telemetry-sdk package.

bash
$
pip install newrelic-telemetry-sdk

Open db.py file in the IDE of your choice and configure the LogClient.

import os
import random
import datetime
from sys import getsizeof
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetric
from newrelic_telemetry_sdk import EventClient, Event
from newrelic_telemetry_sdk import LogClient
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])
event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])
log_client = LogClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}
stats = {
"read_response_times": [],
"read_errors": 0,
"read_count": 0,
"create_response_times": [],
"create_errors": 0,
"create_count": 0,
"update_response_times": [],
"update_errors": 0,
"update_count": 0,
"delete_response_times": [],
"delete_errors": 0,
"delete_count": 0,
"cache_hit": 0,
}
last_push = {
"read": datetime.datetime.now(),
"create": datetime.datetime.now(),
"update": datetime.datetime.now(),
"delete": datetime.datetime.now(),
}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10:
stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["read_errors"] += 1
stats["read_count"] += 1
try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value
stats["create_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["create_errors"] += 1
stats["create_count"] += 1
try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value
stats["update_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["update_errors"] += 1
stats["update_count"] += 1
try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None)
stats["delete_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["delete_errors"] += 1
stats["delete_count"] += 1
try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now()
interval_ms = (now - last_push[type_]).total_seconds() * 1000
if interval_ms >= 2000:
send_metrics(type_, interval_ms)
send_event(type_)
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db))
db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric(
name=f"fdb_{type_}_errors",
value=stats[f"{type_}_errors"],
interval_ms=interval_ms
)
cache_hits = CountMetric(
name=f"fdb_cache_hits",
value=stats["cache_hit"],
interval_ms=interval_ms
)
response_times = stats[f"{type_}_response_times"]
response_time_summary = SummaryMetric(
f"fdb_{type_}_responses",
count=len(response_times),
min=min(response_times),
max=max(response_times),
sum=sum(response_times),
interval_ms=interval_ms,
)
batch = [keys, db_size, errors, cache_hits, response_time_summary]
response = metric_client.send_batch(batch)
response.raise_for_status()
print("Sent metrics successfully!")
clear(type_)
def send_event(type_):
print("sending event...")
count = Event(
"fdb_method", {"method": type_}
)
response = event_client.send_batch(count)
response.raise_for_status()
print("Event sent successfully!")
def clear(type_):
stats[f"{type_}_response_times"] = []
stats[f"{type_}_errors"] = 0
stats["cache_hit"] = 0
stats[f"{type_}_count"] = 0
last_push[type_] = datetime.datetime.now()
db.py

Important

This example expects an environment variable called $NEW_RELIC_LICENSE_KEY.

Instrument your app to send logs to New Relic.

import os
import random
import datetime
from sys import getsizeof
import psutil
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetric
from newrelic_telemetry_sdk import EventClient, Event
from newrelic_telemetry_sdk import LogClient, Log
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])
event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])
log_client = LogClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}
stats = {
"read_response_times": [],
"read_errors": 0,
"read_count": 0,
"create_response_times": [],
"create_errors": 0,
"create_count": 0,
"update_response_times": [],
"update_errors": 0,
"update_count": 0,
"delete_response_times": [],
"delete_errors": 0,
"delete_count": 0,
"cache_hit": 0,
}
last_push = {
"read": datetime.datetime.now(),
"create": datetime.datetime.now(),
"update": datetime.datetime.now(),
"delete": datetime.datetime.now(),
}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10:
stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["read_errors"] += 1
stats["read_count"] += 1
try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value
stats["create_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["create_errors"] += 1
stats["create_count"] += 1
try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value
stats["update_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["update_errors"] += 1
stats["update_count"] += 1
try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None)
stats["delete_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["delete_errors"] += 1
stats["delete_count"] += 1
try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now()
interval_ms = (now - last_push[type_]).total_seconds() * 1000
if interval_ms >= 2000:
send_metrics(type_, interval_ms)
send_event(type_)
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db))
db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric(
name=f"fdb_{type_}_errors",
value=stats[f"{type_}_errors"],
interval_ms=interval_ms
)
cache_hits = CountMetric(
name=f"fdb_cache_hits",
value=stats["cache_hit"],
interval_ms=interval_ms
)
response_times = stats[f"{type_}_response_times"]
response_time_summary = SummaryMetric(
f"fdb_{type_}_responses",
count=len(response_times),
min=min(response_times),
max=max(response_times),
sum=sum(response_times),
interval_ms=interval_ms,
)
batch = [keys, db_size, errors, cache_hits, response_time_summary]
response = metric_client.send_batch(batch)
response.raise_for_status()
print("Sent metrics successfully!")
clear(type_)
def send_event(type_):
print("sending event...")
count = Event(
"fdb_method", {"method": type_}
)
response = event_client.send_batch(count)
response.raise_for_status()
print("Event sent successfully!")
def send_logs():
print("sending log...")
process = psutil.Process(os.getpid())
memory_usage = process.memory_percent()
log = Log("FlashDB is using " + str(round(memory_usage * 100, 2)) + "% memory")
response = log_client.send(log)
response.raise_for_status()
print("Log sent successfully!")
def clear(type_):
stats[f"{type_}_response_times"] = []
stats[f"{type_}_errors"] = 0
stats["cache_hit"] = 0
stats[f"{type_}_count"] = 0
last_push[type_] = datetime.datetime.now()
db.py

Here, you instrument your platform to send memory_usage as log to New Relic.

Amend the try_send module to send the logs every 2 second.

import os
import random
import datetime
from sys import getsizeof
import psutil
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetric
from newrelic_telemetry_sdk import EventClient, Event
from newrelic_telemetry_sdk import LogClient, Log
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])
event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])
log_client = LogClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}
stats = {
"read_response_times": [],
"read_errors": 0,
"read_count": 0,
"create_response_times": [],
"create_errors": 0,
"create_count": 0,
"update_response_times": [],
"update_errors": 0,
"update_count": 0,
"delete_response_times": [],
"delete_errors": 0,
"delete_count": 0,
"cache_hit": 0,
}
last_push = {
"read": datetime.datetime.now(),
"create": datetime.datetime.now(),
"update": datetime.datetime.now(),
"delete": datetime.datetime.now(),
}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10:
stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["read_errors"] += 1
stats["read_count"] += 1
try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value
stats["create_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["create_errors"] += 1
stats["create_count"] += 1
try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value
stats["update_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["update_errors"] += 1
stats["update_count"] += 1
try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None)
stats["delete_response_times"].append(random.uniform(0.5, 1.0))
if random.choice([True, False]):
stats["delete_errors"] += 1
stats["delete_count"] += 1
try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now()
interval_ms = (now - last_push[type_]).total_seconds() * 1000
if interval_ms >= 2000:
send_metrics(type_, interval_ms)
send_event(type_)
send_logs()
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db))
db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric(
name=f"fdb_{type_}_errors",
value=stats[f"{type_}_errors"],
interval_ms=interval_ms
)
cache_hits = CountMetric(
name=f"fdb_cache_hits",
value=stats["cache_hit"],
interval_ms=interval_ms
)
response_times = stats[f"{type_}_response_times"]
response_time_summary = SummaryMetric(
f"fdb_{type_}_responses",
count=len(response_times),
min=min(response_times),
max=max(response_times),
sum=sum(response_times),
interval_ms=interval_ms,
)
batch = [keys, db_size, errors, cache_hits, response_time_summary]
response = metric_client.send_batch(batch)
response.raise_for_status()
print("Sent metrics successfully!")
clear(type_)
def send_event(type_):
print("sending event...")
count = Event(
"fdb_method", {"method": type_}
)
response = event_client.send_batch(count)
response.raise_for_status()
print("Event sent successfully!")
def send_logs():
print("sending log...")
process = psutil.Process(os.getpid())
memory_usage = process.memory_percent()
log = Log("FlashDB is using " + str(round(memory_usage * 100, 2)) + "% memory")
response = log_client.send(log)
response.raise_for_status()
print("Log sent successfully!")
def clear(type_):
stats[f"{type_}_response_times"] = []
stats[f"{type_}_errors"] = 0
stats["cache_hit"] = 0
stats[f"{type_}_count"] = 0
last_push[type_] = datetime.datetime.now()
db.py

Your platform will now report the configured logs every 2 seconds.

Navigate to the root of your application at build-a-quickstart-lab/send-logs/flashDB.

Run your services to verify that it is reporting logs.

bash
$
python simulator.py
Writing...
try_send
Reading...
try_send
Reading...
try_send
Writing...
try_send
Writing...
try_send
Reading...
sending metrics...
Sent metrics successfully!
sending event...
Event sent successfully!
sending log...
Log sent successfully!

Alternative Options

If the language SDK doesn't fit your needs, try out one of our other options:

In this procedure, you instrumented your service to send logs to New Relic. Next, instrument it to send traces.

Tip

This procedure is a part of course that teaches you how to build a quickstart. Continue to next lesson, send traces from your product.

Copyright © 2024 New Relic Inc.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.