Conseil
Cette procédure fait partie du cours qui vous apprend à créer un quickstart. Si vous ne l’avez pas déjà fait, consultez l’ introduction du cours.
Chaque procédure de ce cours s'appuie sur la précédente, alors assurez-vous d'avoir terminé la dernière procédure, envoyez le log de votre produit avant de continuer avec celle-ci.
trace les détails de capture d'une seule requête au fur et à mesure de son déplacement dans un système. Ils sont composés d'étendues, qui sont des structures de données représentant des opérations individuelles dans le flux d'exécution.
New Relic vous propose une variété de moyens pour instrumenter votre application afin d'envoyer des traces à notre API de trace.
Dans cette leçon, vous apprenez à envoyer des traces depuis votre produit à l'aide de notre kit de développement logiciel de télémétrie (SDK).
import osimport randomimport datetimefrom sys import getsizeofimport psutil
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetricfrom newrelic_telemetry_sdk import EventClient, Eventfrom newrelic_telemetry_sdk import LogClient, Log
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])log_client = LogClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}stats = { "read_response_times": [], "read_errors": 0, "read_count": 0, "create_response_times": [], "create_errors": 0, "create_count": 0, "update_response_times": [], "update_errors": 0, "update_count": 0, "delete_response_times": [], "delete_errors": 0, "delete_count": 0, "cache_hit": 0,}last_push = { "read": datetime.datetime.now(), "create": datetime.datetime.now(), "update": datetime.datetime.now(), "delete": datetime.datetime.now(),}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10: stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["read_errors"] += 1 stats["read_count"] += 1 try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value stats["create_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["create_errors"] += 1 stats["create_count"] += 1 try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value stats["update_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["update_errors"] += 1 stats["update_count"] += 1 try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None) stats["delete_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["delete_errors"] += 1 stats["delete_count"] += 1 try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now() interval_ms = (now - last_push[type_]).total_seconds() * 1000 if interval_ms >= 2000: send_metrics(type_, interval_ms) send_event(type_) send_logs()
def send_metrics(type_, interval_ms): print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db)) db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric( name=f"fdb_{type_}_errors", value=stats[f"{type_}_errors"], interval_ms=interval_ms )
cache_hits = CountMetric( name=f"fdb_cache_hits", value=stats["cache_hit"], interval_ms=interval_ms )
response_times = stats[f"{type_}_response_times"] response_time_summary = SummaryMetric( f"fdb_{type_}_responses", count=len(response_times), min=min(response_times), max=max(response_times), sum=sum(response_times), interval_ms=interval_ms, )
batch = [keys, db_size, errors, cache_hits, response_time_summary] response = metric_client.send_batch(batch) response.raise_for_status() print("Sent metrics successfully!") clear(type_)
def send_event(type_):
print("sending event...")
count = Event( "fdb_method", {"method": type_} )
response = event_client.send_batch(count) response.raise_for_status() print("Event sent successfully!")
def send_logs():
print("sending log...")
process = psutil.Process(os.getpid()) memory_usage = process.memory_percent()
log = Log("FlashDB is using " + str(round(memory_usage * 100, 2)) + "% memory")
response = log_client.send(log) response.raise_for_status() print("Log sent successfully!")
def clear(type_): stats[f"{type_}_response_times"] = [] stats[f"{type_}_errors"] = 0 stats["cache_hit"] = 0 stats[f"{type_}_count"] = 0 last_push[type_] = datetime.datetime.now()
Utilisez notre SDK
Nous proposons un open source SDK de télémétrie dans plusieurs langages de programmation les plus populaires tels que Python, Java, Node/TypeScript. Ils envoient des données à nos API d'ingestion de données, y compris notre API Trace.
Dans cette leçon, vous apprendrez à installer et à utiliser le SDK de télémétrie Python pour signaler votre première étendue à New Relic.
Déclarez votre première portée
Accédez au répertoire send-traces/flashDB
du référentiel du cours.
$cd ../../send-traces/flashDB
Si vous ne l'avez pas déjà fait, installez le package newrelic-telemetry-sdk
.
$pip install newrelic-telemetry-sdk
Ouvrez le fichier db.py
dans l'IDE de votre choix et configurez le SpanClient
.
import osimport randomimport datetimefrom sys import getsizeofimport psutil
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetricfrom newrelic_telemetry_sdk import EventClient, Eventfrom newrelic_telemetry_sdk import LogClient, Logfrom newrelic_telemetry_sdk import SpanClient
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])log_client = LogClient(os.environ["NEW_RELIC_LICENSE_KEY"])span_client = SpanClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}stats = { "read_response_times": [], "read_errors": 0, "read_count": 0, "create_response_times": [], "create_errors": 0, "create_count": 0, "update_response_times": [], "update_errors": 0, "update_count": 0, "delete_response_times": [], "delete_errors": 0, "delete_count": 0, "cache_hit": 0,}last_push = { "read": datetime.datetime.now(), "create": datetime.datetime.now(), "update": datetime.datetime.now(), "delete": datetime.datetime.now(),}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10: stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["read_errors"] += 1 stats["read_count"] += 1 try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value stats["create_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["create_errors"] += 1 stats["create_count"] += 1 try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value stats["update_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["update_errors"] += 1 stats["update_count"] += 1 try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None) stats["delete_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["delete_errors"] += 1 stats["delete_count"] += 1 try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now() interval_ms = (now - last_push[type_]).total_seconds() * 1000 if interval_ms >= 2000: send_metrics(type_, interval_ms) send_event(type_) send_logs()
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db)) db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric( name=f"fdb_{type_}_errors", value=stats[f"{type_}_errors"], interval_ms=interval_ms )
cache_hits = CountMetric( name=f"fdb_cache_hits", value=stats["cache_hit"], interval_ms=interval_ms )
response_times = stats[f"{type_}_response_times"] response_time_summary = SummaryMetric( f"fdb_{type_}_responses", count=len(response_times), min=min(response_times), max=max(response_times), sum=sum(response_times), interval_ms=interval_ms, )
batch = [keys, db_size, errors, cache_hits, response_time_summary] response = metric_client.send_batch(batch) response.raise_for_status() print("Sent metrics successfully!") clear(type_)
def send_event(type_):
print("sending event...")
count = Event( "fdb_method", {"method": type_} )
response = event_client.send_batch(count) response.raise_for_status() print("Event sent successfully!")
def send_logs():
print("sending log...")
process = psutil.Process(os.getpid()) memory_usage = process.memory_percent()
log = Log("FlashDB is using " + str(round(memory_usage * 100, 2)) + "% memory")
response = log_client.send(log) response.raise_for_status() print("Log sent successfully!")
def clear(type_): stats[f"{type_}_response_times"] = [] stats[f"{type_}_errors"] = 0 stats["cache_hit"] = 0 stats[f"{type_}_count"] = 0 last_push[type_] = datetime.datetime.now()
Important
Cet exemple attend une variable d’environnement appelée $NEW_RELIC_LICENSE_KEY
.
instrumentez votre application pour signaler une plage à New Relic.
import osimport randomimport datetimefrom sys import getsizeofimport psutilimport time
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetricfrom newrelic_telemetry_sdk import EventClient, Eventfrom newrelic_telemetry_sdk import LogClient, Logfrom newrelic_telemetry_sdk import SpanClient, Span
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])log_client = LogClient(os.environ["NEW_RELIC_LICENSE_KEY"])span_client = SpanClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}stats = { "read_response_times": [], "read_errors": 0, "read_count": 0, "create_response_times": [], "create_errors": 0, "create_count": 0, "update_response_times": [], "update_errors": 0, "update_count": 0, "delete_response_times": [], "delete_errors": 0, "delete_count": 0, "cache_hit": 0,}last_push = { "read": datetime.datetime.now(), "create": datetime.datetime.now(), "update": datetime.datetime.now(), "delete": datetime.datetime.now(),}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10: stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["read_errors"] += 1 stats["read_count"] += 1 try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value stats["create_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["create_errors"] += 1 stats["create_count"] += 1 try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value stats["update_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["update_errors"] += 1 stats["update_count"] += 1 try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None) stats["delete_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["delete_errors"] += 1 stats["delete_count"] += 1 try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now() interval_ms = (now - last_push[type_]).total_seconds() * 1000 if interval_ms >= 2000: send_metrics(type_, interval_ms) send_event(type_) send_logs()
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db)) db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric( name=f"fdb_{type_}_errors", value=stats[f"{type_}_errors"], interval_ms=interval_ms )
cache_hits = CountMetric( name=f"fdb_cache_hits", value=stats["cache_hit"], interval_ms=interval_ms )
response_times = stats[f"{type_}_response_times"] response_time_summary = SummaryMetric( f"fdb_{type_}_responses", count=len(response_times), min=min(response_times), max=max(response_times), sum=sum(response_times), interval_ms=interval_ms, )
batch = [keys, db_size, errors, cache_hits, response_time_summary] response = metric_client.send_batch(batch) response.raise_for_status() print("Sent metrics successfully!") clear(type_)
def send_event(type_):
print("sending event...")
count = Event( "fdb_method", {"method": type_} )
response = event_client.send_batch(count) response.raise_for_status() print("Event sent successfully!")
def send_logs():
print("sending log...")
process = psutil.Process(os.getpid()) memory_usage = process.memory_percent()
log = Log("FlashDB is using " + str(round(memory_usage * 100, 2)) + "% memory")
response = log_client.send(log) response.raise_for_status() print("Log sent successfully!")
def send_spans():
print("sending span...")
with Span(name="sleep") as span: time.sleep(0.5)
response = span_client.send(span) response.raise_for_status() print("Span sleep sent successfully!")
def clear(type_): stats[f"{type_}_response_times"] = [] stats[f"{type_}_errors"] = 0 stats["cache_hit"] = 0 stats[f"{type_}_count"] = 0 last_push[type_] = datetime.datetime.now()
Ici, vous instrumentez votre plateforme pour envoyer une simple période de sommeil à New Relic.
Modifiez le module try_send
pour envoyer le span toutes les 2 secondes.
import osimport randomimport datetimefrom sys import getsizeofimport psutilimport time
from newrelic_telemetry_sdk import MetricClient, GaugeMetric, CountMetric, SummaryMetricfrom newrelic_telemetry_sdk import EventClient, Eventfrom newrelic_telemetry_sdk import LogClient, Logfrom newrelic_telemetry_sdk import SpanClient, Span
metric_client = MetricClient(os.environ["NEW_RELIC_LICENSE_KEY"])event_client = EventClient(os.environ["NEW_RELIC_LICENSE_KEY"])log_client = LogClient(os.environ["NEW_RELIC_LICENSE_KEY"])span_client = SpanClient(os.environ["NEW_RELIC_LICENSE_KEY"])
db = {}stats = { "read_response_times": [], "read_errors": 0, "read_count": 0, "create_response_times": [], "create_errors": 0, "create_count": 0, "update_response_times": [], "update_errors": 0, "update_count": 0, "delete_response_times": [], "delete_errors": 0, "delete_count": 0, "cache_hit": 0,}last_push = { "read": datetime.datetime.now(), "create": datetime.datetime.now(), "update": datetime.datetime.now(), "delete": datetime.datetime.now(),}
def read(key):
print(f"Reading...")
if random.randint(0, 30) > 10: stats["cache_hit"] += 1
stats["read_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["read_errors"] += 1 stats["read_count"] += 1 try_send("read")
def create(key, value):
print(f"Writing...")
db[key] = value stats["create_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["create_errors"] += 1 stats["create_count"] += 1 try_send("create")
def update(key, value):
print(f"Updating...")
db[key] = value stats["update_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["update_errors"] += 1 stats["update_count"] += 1 try_send("update")
def delete(key):
print(f"Deleting...")
db.pop(key, None) stats["delete_response_times"].append(random.uniform(0.5, 1.0)) if random.choice([True, False]): stats["delete_errors"] += 1 stats["delete_count"] += 1 try_send("delete")
def try_send(type_):
print("try_send")
now = datetime.datetime.now() interval_ms = (now - last_push[type_]).total_seconds() * 1000 if interval_ms >= 2000: send_metrics(type_, interval_ms) send_event(type_) send_logs() send_spans()
def send_metrics(type_, interval_ms):
print("sending metrics...")
keys = GaugeMetric("fdb_keys", len(db)) db_size = GaugeMetric("fdb_size", getsizeof(db))
errors = CountMetric( name=f"fdb_{type_}_errors", value=stats[f"{type_}_errors"], interval_ms=interval_ms )
cache_hits = CountMetric( name=f"fdb_cache_hits", value=stats["cache_hit"], interval_ms=interval_ms )
response_times = stats[f"{type_}_response_times"] response_time_summary = SummaryMetric( f"fdb_{type_}_responses", count=len(response_times), min=min(response_times), max=max(response_times), sum=sum(response_times), interval_ms=interval_ms, )
batch = [keys, db_size, errors, cache_hits, response_time_summary] response = metric_client.send_batch(batch) response.raise_for_status() print("Sent metrics successfully!") clear(type_)
def send_event(type_):
print("sending event...")
count = Event( "fdb_method", {"method": type_} )
response = event_client.send_batch(count) response.raise_for_status() print("Event sent successfully!")
def send_logs():
print("sending log...")
process = psutil.Process(os.getpid()) memory_usage = process.memory_percent()
log = Log("FlashDB is using " + str(round(memory_usage * 100, 2)) + "% memory")
response = log_client.send(log) response.raise_for_status() print("Log sent successfully!")
def send_spans():
print("sending span...")
with Span(name="sleep") as span: time.sleep(0.5)
response = span_client.send(span) response.raise_for_status() print("Span sleep sent successfully!")
def clear(type_): stats[f"{type_}_response_times"] = [] stats[f"{type_}_errors"] = 0 stats["cache_hit"] = 0 stats[f"{type_}_count"] = 0 last_push[type_] = datetime.datetime.now()
Votre plateforme signalera désormais cette durée toutes les 2 secondes.
Accédez à la racine de votre application à build-a-quickstart-lab/send-traces/flashDB
.
Exécutez vos services pour vérifier qu’ils signalent la durée.
$python simulator.pyWriting...try_sendReading...try_sendReading...try_sendWriting...try_sendWriting...try_sendReading...sending metrics...Sent metrics successfully!sending event...Event sent successfully!sending log...Log sent successfully!sending span...Span sleep sent successfully!
Options alternatives
Si le SDK de langue ne répond pas à vos besoins, essayez l'une de nos autres options :
Instrumentation existante Zipkin: si vous disposez d'une Zipkin implémentation existante, vous pouvez simplement modifier le point de terminaison sur New Relic pour signaler vos données. Lisez notre documentation pour signaler les données de l'instrumentation Zipkin existante.
Implémentation manuelle: si les options précédentes ne correspondent pas à vos besoins, vous pouvez toujours instrumenter manuellement votre propre bibliothèque pour effectuer une requête POST à l'API de trace New Relic.
Votre plateforme transmet désormais des données à New Relic. Ensuite, vous observez ces données dans New Relic à l’aide dashboard.
Conseil
Cette procédure fait partie du cours qui vous apprend à créer un quickstart. Passez à la leçon suivante, créez un dashboard.